Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(4): e17260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563236

RESUMO

The impact of anthropogenic global warming has induced significant upward dispersal of trees to higher elevations at alpine treelines. Assessing vertical deviation from current uppermost tree distributions to potential treeline positions is crucial for understanding ecosystem responses to evolving global climate. However, due to data resolution constraints and research scale limitation, comprehending the global pattern of alpine treeline elevations and driving factors remains challenging. This study constructed a comprehensive quasi-observational dataset of uppermost tree distribution across global mountains using Google Earth imagery. Validating the isotherm of mean growing-season air temperature at 6.6 ± 0.3°C as the global indicator of thermal treeline, we found that around two-thirds of uppermost tree distribution records significantly deviated from it. Drought conditions constitute the primary driver in 51% of cases, followed by mountain elevation effect which indicates surface heat (27%). Our analyses underscore the multifaceted determinants of global patterns of alpine treeline, explaining divergent treeline responses to climate warming. Moisture, along with temperature and disturbance, plays the most fundamental roles in understanding global variation of alpine treeline elevation and forecasting alpine treeline response to ongoing global warming.


Assuntos
Ecossistema , Árvores , Árvores/fisiologia , Temperatura , Temperatura Baixa , Clima , Altitude
2.
Ecol Lett ; 27(4): e14403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577961

RESUMO

Species interactions such as facilitation and competition play a crucial role in driving species range shifts. However, density dependence as a key feature of these processes has received little attention in both empirical and modelling studies. Herein, we used a novel, individual-based treeline model informed by rich in situ observations to quantify the contribution of density-dependent species interactions to alpine treeline dynamics, an iconic biome boundary recognized as an indicator of global warming. We found that competition and facilitation dominate in dense versus sparse vegetation scenarios respectively. The optimal balance between these two effects was identified at an intermediate vegetation thickness where the treeline elevation was the highest. Furthermore, treeline shift rates decreased sharply with vegetation thickness and the associated transition from positive to negative species interactions. We thus postulate that vegetation density must be considered when modelling species range dynamics to avoid inadequate predictions of its responses to climate warming.


Assuntos
Ecossistema , Árvores , Árvores/fisiologia , Aquecimento Global , Mudança Climática , Clima
3.
Curr Biol ; 34(6): 1161-1167.e3, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325374

RESUMO

Wood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e., coincident changes in distant populations) of spring phenology is one of the most prominent climate responses of forest trees. However, whether temperature variability contributes to an increase in the spatial synchrony of spring phenology and its underlying mechanisms remains largely unknown. Here, we analyzed an extensive dataset of xylem phenology observations of 20 conifer species from 75 sites over the Northern Hemisphere. Along the gradient of increase in temperature variability in the 75 sites, we observed a convergence in the onset of cell enlargement roughly toward the 5th of June, with a convergence in the onset of cell wall thickening toward the summer solstice. The increase in rainfall since the 5th of June is favorable for cell division and expansion, and as the most hours of sunlight are received around the summer solstice, it allows the optimization of carbon assimilation for cell wall thickening. Hence, the convergences can be considered as the result of matching xylem phenological activities to favorable conditions in regions with high temperature variability. Yet, forest trees relying on such consistent seasonal cues for xylem growth could constrain their ability to respond to climate warming, with consequences for the potential growing season length and, ultimately, forest productivity and survival in the future.


Assuntos
Traqueófitas , Temperatura , Ecossistema , Mudança Climática , Xilema , Estações do Ano , Árvores
4.
Sci Total Environ ; 912: 168778, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38008313

RESUMO

Drought is the driver for ecosystem production in semi-arid areas. However, the response mechanism of ecosystem productivity to drought remains largely unknown. In particular, it is still unclear whether drought limits the production via photosynthetic capacity or phenological process. Herein, we assess the effects of maximum seasonal photosynthesis, growing season length, and climate on the annual gross primary productivity (GPP) in vegetation areas of the Loess Plateau using multi-source remote sensing and climate data from 2001 to 2021. We found that maximum seasonal photosynthesis rather than growing season length dominates annual GPP, with above 90 % of the study area showing significant and positive correlation. GPP and maximum seasonal photosynthesis were positively correlated with self-calibrating Palmer Drought Severity Index (scPDSI), standardized precipitation and evapotranspiration index (SPEI) in >95 % of the study area. Structural equation model demonstrated that both drought indices contributed to the annual GPP by promoting the maximum seasonal photosynthesis. Total annual precipitation had a positive and significant effect on two drought indices, whereas the effects of temperature and radiation were not significant. Evidence from wood formation data also confirmed that low precipitation inhibited long-term carbon sequestration by decreasing the maximum growth rate in forests. Our findings suggest that drought limits ecosystem carbon sequestration by inhibiting vegetation photosynthetic capacity rather than phenology, providing a support for assessing the future dynamics of the terrestrial carbon cycle and guiding landscape management in semi-arid ecosystems.


Assuntos
Sequestro de Carbono , Ecossistema , Secas , Florestas , Estações do Ano , Fotossíntese , Mudança Climática
5.
Nat Commun ; 14(1): 6616, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857605

RESUMO

Although the global climate is warming, external forcing driven by explosive volcanic eruptions may still cause abrupt cooling. The 1809 and 1815 Tambora eruptions caused lasting cold extremes worldwide, providing a unique lens that allows us to investigate the magnitude of global forest resilience to and recovery from volcanic cooling. Here, we show that growth resilience inferred from tree-ring data was severely impacted by cooling in high latitudes and elevations: the average tree growth decreased substantially (up to 31.8%), especially in larch forests, and regional-scale probabilities of severe growth reduction (below -2σ) increased up to 1390%. The influence of the eruptions extended longer (beyond the year 1824) in mid- than in high-latitudes, presumably due to the combined impacts of cold and drought stress. As Tambora-size eruptions statistically occur every 200-400 years, assessing their influences on ecosystems can help humankind mitigate adverse impacts on natural resources through improved management, especially in high latitude and elevation regions.

6.
Natl Sci Rev ; 10(10): nwad182, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37671321

RESUMO

Despite the importance of species interaction in modulating the range shifts of plants, little is known about the responses of coexisting life forms to a warmer climate. Here, we combine long-term monitoring of cambial phenology in sympatric trees and shrubs at two treelines of the Tibetan Plateau, with a meta-analysis of ring-width series from 344 shrubs and 575 trees paired across 11 alpine treelines in the Northern Hemisphere. Under a spring warming of +1°C, xylem resumption advances by 2-4 days in trees, but delays by 3-8 days in shrubs. The divergent phenological response to warming was due to shrubs being 3.2 times more sensitive than trees to chilling accumulation. Warmer winters increased the thermal requirement for cambial reactivation in shrubs, leading to a delayed response to warmer springs. Our meta-analysis confirmed such a mechanism across continental scales. The warming-induced phenological mismatch may give a competitive advantage to trees over shrubs, which would provide a new explanation for increasing alpine treeline shifts under the context of climate change.

8.
Glob Chang Biol ; 29(24): 7001-7011, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37477066

RESUMO

Mountain treelines are thought to be sensitive to climate change. However, how climate impacts mountain treelines is not yet fully understood as treelines may also be affected by other human activities. Here, we focus on "closed-loop" mountain treelines (CLMT) that completely encircle a mountain and are less likely to have been influenced by human land-use change. We detect a total length of ~916,425 km of CLMT across 243 mountain ranges globally and reveal a bimodal latitudinal distribution of treeline elevations with higher treeline elevations occurring at greater distances from the coast. Spatially, we find that temperature is the main climatic driver of treeline elevation in boreal and tropical regions, whereas precipitation drives CLMT position in temperate zones. Temporally, we show that 70% of CLMT have moved upward, with a mean shift rate of 1.2 m/year over the first decade of the 21st century. CLMT are shifting fastest in the tropics (mean of 3.1 m/year), but with greater variability. Our work provides a new mountain treeline database that isolates climate impacts from other anthropogenic pressures, and has important implications for biodiversity, natural resources, and ecosystem adaptation in a changing climate.


Assuntos
Ecossistema , Árvores , Humanos , Temperatura , Mudança Climática , Biodiversidade
9.
Front Plant Sci ; 14: 1137365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844071

RESUMO

Introduction: Shrub promotes the survival, growth and reproduction of understory species by buffering the environmental extremes and improving limited resources (i.e., facilitation effect) in arid and semiarid regions. However, the importance of soil water and nutrient availability on shrub facilitation, and its trend along a drought gradient have been relatively less addressed in water-limited systems. Methods: We investigated species richness, plant size, soil total nitrogen and dominant grass leaf δ13C within and outside the dominant leguminous cushion-like shrub Caragana versicolor along a water deficit gradient in drylands of Tibetan Plateau. Results: We found that C. versicolor increased grass species richness but had a negative effect on annual and perennial forbs. Along the water deficit gradient, plant interaction assessed by species richness (RIIspecies) showed a unimodal pattern with shift from increase to decrease, while plant interaction assessed by plant size (RIIsize) did not vary significantly. The effect of C. versicolor on soil nitrogen, rather than water availability, determined its overall effect on understory species richness. Neither the effect of C. versicolor on soil nitrogen nor water availability affected plant size. Discussion: Our study suggests that the drying tendency in association with the recent warming trends observed in drylands of Tibetan Plateau, will likely hinder the facilitation effect of nurse leguminous shrub on understories if moisture availability crosses a critical minimum threshold.

10.
Glob Chang Biol ; 29(6): 1606-1617, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36451586

RESUMO

Despite growing interest in predicting plant phenological shifts, advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (-3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°-66° N). Along the MAT gradient, we identified a threshold temperature (using segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches, with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models), respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.


Assuntos
Traqueófitas , Teorema de Bayes , Florestas , Temperatura Baixa , Temperatura , Mudança Climática , Estações do Ano
11.
Nat Ecol Evol ; 6(7): 890-899, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654898

RESUMO

High-elevation trees cannot always reach the thermal treeline, the potential upper range limit set by growing-season temperature. But delineation of the realized upper range limit of trees and quantification of the drivers, which lead to trees being absent from the treeline, is lacking. Here, we used 30 m resolution satellite tree-cover data, validated by more than 0.7 million visual interpretations from Google Earth images, to map the realized range limit of trees along the Himalaya which harbours one of the world's richest alpine endemic flora. The realized range limit of trees is ~800 m higher in the eastern Himalaya than in the western and central Himalaya. Trees had reached their thermal treeline positions in more than 80% of the cases over eastern Himalaya but are absent from the treeline position in western and central Himalaya, due to anthropogenic disturbance and/or premonsoon drought. By combining projections of the deviation of trees from the treeline position due to regional environmental stresses with warming-induced treeline shift, we predict that trees will migrate upslope by ~140 m by the end of the twenty-first century in the eastern Himalaya. This shift will cause the endemic flora to lose at least ~20% of its current habitats, highlighting the necessity to reassess the effectiveness of current conservation networks and policies over the Himalaya.


Assuntos
Ecossistema , Árvores , Estações do Ano , Temperatura
13.
Nat Ecol Evol ; 6(4): 397-404, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35228669

RESUMO

Climatic warming alters the onset, duration and cessation of the vegetative season. While previous studies have shown a tight link between thermal conditions and leaf phenology, less is known about the impacts of phenological changes on tree growth. Here, we assessed the relationships between the start of the thermal growing season and tree growth across the extratropical Northern Hemisphere using 3,451 tree-ring chronologies and daily climatic data for 1948-2014. An earlier start of the thermal growing season promoted growth in regions with high ratios of precipitation to temperature but limited growth in cold-dry regions. Path analyses indicated that an earlier start of the thermal growing season enhanced growth primarily by alleviating thermal limitations on wood formation in boreal forests and by lengthening the period of growth in temperate and Mediterranean forests. Semi-arid and dry subalpine forests, however, did not benefit from an earlier onset of growth and a longer growing season, presumably due to associated water loss and/or more frequent early spring frosts. These emergent patterns of how climatic impacts on wood phenology affect tree growth at regional to hemispheric scales hint at how future phenological changes may affect the carbon sequestration capacity of extratropical forest ecosystems.


Assuntos
Ecossistema , Árvores , Temperatura Baixa , Florestas , Estações do Ano
14.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35193980

RESUMO

Shrub recruitment, a key component of vegetation dynamics beyond forests, is a highly sensitive indicator of climate and environmental change. Warming-induced tipping points in Arctic and alpine treeless ecosystems are, however, little understood. Here, we compare two long-term recruitment datasets of 2,770 shrubs from coastal East Greenland and from the Tibetan Plateau against atmospheric circulation patterns between 1871 and 2010 Common Era. Increasing rates of shrub recruitment since 1871 reached critical tipping points in the 1930s and 1960s on the Tibetan Plateau and in East Greenland, respectively. A recent decline in shrub recruitment in both datasets was likely related to warmer and drier climates, with a stronger May to July El Niño Southern Oscillation over the Tibetan Plateau and a stronger June to July Atlantic Multidecadal Oscillation over Greenland. Exceeding the thermal optimum of shrub recruitment, the recent warming trend may cause soil moisture deficit. Our findings suggest that changes in atmospheric circulation explain regional climate dynamics and associated response patterns in Arctic and alpine shrub communities, knowledge that should be considered to protect vulnerable high-elevation and high-latitude ecosystems from the cascading effects of anthropogenic warming.


Assuntos
Desenvolvimento Vegetal , Temperatura , Regiões Árticas , Mudança Climática , Ecossistema , Groenlândia , Tibet
15.
Ying Yong Sheng Tai Xue Bao ; 32(10): 3653-3660, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34676727

RESUMO

Evaluating the impacts of human activity on river runoff has important implications for regional water resource management. Here, we used seven tree-ring width chronologies to establish a regional mean tree-ring width chronology from the northern mountain of Delingha, Qaidam Basin. We conducted the correlation, moving correlation and regression analysis of regional mean tree-ring width chronology with runoff data from Bayin River gauge station. Then, we stimulated the June runoff of Bayin River from 1956 to 2002. The results showed that the highest correlation coefficient was found for June runoff (r=0.63, P<0.01), and their moving correlation coefficient decreased after 1986. Based on the stable relationship between tree-ring width chronology and the June runoff during 1956-1986, we built the reconstruction function, which was explained 50.8% of observed runoff. The stimulated runoff during 1987 to 2002 was significantly higher than the observed runoff (3.01 m3·s-1, P<0.001). These results indicated that human activity from the upper river had significant impacts on Bayin River runoff. Human activity should be considered as an important factor to protect security of sustainable water resource utilization for future water resource development and utilization in Bayin River region.


Assuntos
Atividades Humanas , Rios , China , Humanos , Movimentos da Água , Recursos Hídricos
16.
Ying Yong Sheng Tai Xue Bao ; 32(10): 3724-3732, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34676735

RESUMO

Treeline ecotone is an alpine ecological transition zone characterized by strong biotic interactions, which are closely related to treeline ecological processes. Herein, we reviewed the research progress regarding the impacts of plant-plant, plant-animal, and plant-microbe interactions on the ecological processes of treeline ecotone under climate change. Both facilitation and competition among individual plants are important factors mediating dynamics of treeline processes under climate change. However, there is a dearth of dendroecological evidence. Impacts of higher-order interactions on the ecological processes of treeline ecotone remain to be tested. Herbivory and microbe-plant interactions could enhance or reduce the couplings of treeline and climate through affecting soil conditions or altering dynamics of ecological processes such as tree growth and recruitment. How the linkages between aboveground and belowground processes affect treeline responses to climate change remain unclear. In addition, biotic interactions across trophic levels might regulate the responses of ecological processes of treeline ecotone to climate change. Tibetan Plateau provides an excellent opportunity to explore the effects of biotic interactions on the changes of ecological process of treeline ecotone.


Assuntos
Mudança Climática , Árvores , Animais
17.
Science ; 374(6565): 269, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648334
18.
Glob Chang Biol ; 27(17): e13-e14, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34089540

RESUMO

Climate warming is expected to enhance tree growth at alpine treelines. A higher growth rate is forecasted as temperatures rise and growth becomes less dependent on the temperature rise. Since radial growth is just one component of treeline dynamics those forecasts do not necessarily apply to treeline elevation or latitude; treelines can shift upward or poleward or remain stable.


Assuntos
Clima , Árvores , Mudança Climática , Temperatura
20.
Glob Chang Biol ; 27(9): 1879-1889, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33508887

RESUMO

Climate warming is expected to positively alter upward and poleward treelines which are controlled by low temperature and a short growing season. Despite the importance of treelines as a bioassay of climate change, a global field assessment and posterior forecasting of tree growth at annual scales is lacking. Using annually resolved tree-ring data located across Eurasia and the Americas, we quantified and modeled the relationship between temperature and radial growth at treeline during the 20th century. We then tested whether this temperature-growth association will remain stable during the 21st century using a forward model under two climate scenarios (RCP 4.5 and 8.5). During the 20th century, growth enhancements were common in most sites, and temperature and growth showed positive trends. Interestingly, the relationship between temperature and growth trends was contingent on tree age suggesting biogeographic patterns in treeline growth are contingent on local factors besides climate warming. Simulations forecast temperature-growth decoupling during the 21st century. The growing season at treeline is projected to lengthen and growth rates would increase and become less dependent on temperature rise. These forecasts illustrate how growth may decouple from climate warming in cold regions and near the margins of tree existence. Such projected temperature-growth decoupling could impact ecosystem processes in mountain and polar biomes, with feedbacks on climate warming.


Assuntos
Ecossistema , Árvores , Mudança Climática , Temperatura Baixa , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA